Hirdetés

Igazolja, hogy a háromszög felezőmerőlegesei egy pontban metszik egymást!

1 perc olvasás

Igazolja, hogy a háromszög oldalainak felezőmerőlegesei egy pontban metszik egymást!

Hirdetés

Legyen az ABC háromszög A-B oldalának felezőmerőlegese E. Ennek minden pontja egyenlő távolságra van A-tól és B-től. A B-C oldal felezőmerőlegese F. Ennek minden pontja egyenlő távolságra van B-től és C-től. Mivel A-B és B-C metszik egymást, a felezőmerőlegeseik E és F metszik egymást [mert metsző egyenesekre merőlegesek]. Az M metszéspont egyenlő távolságra van A-tól és B-től, B-től és C-től is; vagyis mindhárom ponttól, eszerint A-tól és C-től is. Tehát M rajta van az A-C oldal felezőmerőlegesén. Ezzel állításunkat bebizonyítottuk.

A három felezőmerőleges egyetlen közös pontja az M, a háromszög három csúcsától egyenlő távolságra van. Így ez a pont a háromszög köré írható kör középpontja.


Iratkozz fel hírlevelünkre

Értesülj elsőnek a legújabb minőségi tételekről, jegyzetekről és az oldal új funkcióiról!

Sikeres feliratkozás

Valami hiba történt!