Hirdetés
Hirdetés

Gyökfogalom

3 perc olvasás

Gyökfogalom

„Melyik az a szám, amelyiknek a négyzete a?”

Definíció: √a (négyzetgyök a) az a nemnegatív valós szám, amelynek a négyzete nemnegatív valós a.

Műveleti azonosságok:

  1. √a∙√b=√(a∙b), ha a≥0 és b≥0
  2. √a/√b=√(a/b), ha b≠0

  3. (√a)n=√(an), ha n egész szám

A definíció következménye, hogy √(a2)=|a|. Általában igaz, hogy:

√(a2n)=an, ha n páros

√(a2n)=|an| ha n páratlan

A permanencia-elv mellett bővítjük a gyökfogalmat.

Definíció: n√a (n-edik gyök a)-nak nevezzük azt a számot, amit ha az n-edik hatványra emelünk, a-t kapjuk. n 1-nél nagyobb pozitív egész. Ha n páros. Akkor a nemnegatív valós, egyéb esetben a valós szám.

Hirdetés

Azonosságok:

  1. n√a∙n√b=n√(a∙b), a≥0, b≥0
  2. n√a/n√b=n√(a/b), a≥,, b>0
  3. n√(ak)=(n√a)k, k egész, a≥0
  4. n√(ak)=n∙l√(ak∙l), a valós szám
  5. n√(k√a)=n∙k√a; ha n∙k páros, akkor a≥0, egyébként a valós szám

Definícióból következik, hogy az a szám, amit ha az n-edik hatványra emelünk, akkor a-t kapjuk, n√a. Ugyanakkor a törthatvány definíciójából következik, hogy a1/n az a szám, amit ha az n-edik hatványra emelünk, a-t kapjuk.

Tehát levonhatjuk a következtetést, hogy az n-edik gyök fogalma ekvivalens az 1/n-edik hatványéval (n√a≡a1/n). Általában igaz, hogy ap/q=(q√a)p.

A gyökfüggvények ábrázolhatóak. Az f(x)=n√x függvények (n>1 egész) páros n-re csak a nemnegatív számokon értelmezettek, szigorúan monoton nőnek. Páratlan gyökkitevő esetén az összes valós szám része az értelmezési tartománynak, ezek a függvények páratlanok, szigorúan monoton nőnek és 0-ban inflexiós pontjuk van. Főleg a páratlan kitevőjű gyökfügvényeknél szembeötlő, hogy a gyök- és hatványfüggvények egymás inverzei, vagyis a függő és a független változók felcserélésével egymásba vihetők, tehát az azonos kitevőjű hatvány- és gyökfüggvény képe egymás, az y=x egyenesre vonatkozó tükörképe (természetesen páros kitevő esetén a gyökfüggvény a hatványfüggvénynek csak a pozitív x-ekhez tartozó szárának tükörképe).


Iratkozz fel hírlevelünkreNe maradj le a legújabb tételekről!

Értesülj elsőnek a legújabb minőségi tételekről, jegyzetekről és az oldal új funkcióiról!

Ez is érdekelhet még:
A fény polarizációja

Ha a fény polarizálható, akkor a fény transzverzális hullám. Ha az analizátor 0°ill. 180°-os szöget zár be a polarizátorral, akkor...

5 jótanács a pótfelvételihez

A pótfelvételi eljárás rövidsége miatt nem csupán a határidők szűkebbek, de néhány teendő is máshogy alakul, mint az általános eljárásban....

Close