A, B, valós számok, n, k, pozitív egészek.

(a*b)^n =a^n*b^n

Bizonyítása:

Az (a*b)-ből n darab szorzótényezőt veszünk, s az asszociativitás, és a kommutativitás felhasználásával az A szorzótényezőket, és a B szorzótényezőket egymás mellé írva n darab A szorzótényező, és n darab szorzótényező van. Az n darab A szorzótényezőt úgy írhatjuk, hogy a^n, a b darab n szorzótényezőt úgy írhatjuk, hogy b^n, tehát ez az azonosság azt mondja ki, hogy a szorzatot tényezőnként is hatványozhatjuk. Ha az azonosságot visszafelé olvassuk, akkor egyenlő kitevőjű hatványokat úgy is összeszorozhatunk, hogy az alapok szorzatát emeljük a közös kitevőre.

(a /b)^n =a^n /b^n
A bizonyítás során felhasználjuk a hatvány definícióját, azt, hogy a törtek szorzásakor a számlálót a számlálóval, nevezőt a nevezővel szorozzuk, felhasználjuk még a szorzás asszociatív tulajdonságát is.

(a /b)^n az azt jelenti, hogy (a /b)*(a /b)*(a /b) [N-szer ismételve]. A törtek szorzását felhasználva [a művelet elvégzése után] a számlálóban N darab szorzótényező van, amely a^n formában is felírható, a nevezőben n darab b szorzótényező van, amely b^n formában írható.

Az azonosság azt mondja ki, hogy törtet úgy is hatványozhatunk, hogy a számlálót, és a nevezőt külön-külön hatványozzuk, és a kapott hatványoknak [kívánt sorrendben] a hányadosát vesszük.

Az azonosságot fordított irányban is olvashatjuk: azonos kitevőjű hatványokat úgy is oszthatunk, hogy az alapok hányadosát emeljük a közös kitevőre.

(a^n)^k bizonyításakor a hatvány definícióját, és a szorzás asszociativitását használjuk fel.

Ez az azonosság azt jelenti, hogy az (a^n)-t k-szor szorozzuk össze: (a^n)*(a^n)*(a^n)*... [K-szor] Az (a^n)-t felírhatjuk úgy is: a*a*a*a*...*n. Tehát, összesen k-szor van ilyen csoportunk, tehát n*k darab a-t szorzunk össze: a^(n*k)

Az azonosság azt mondja ki, hogy hatványt úgy is hatványozhatunk, hogy az alapot a kitevők szorzatára emeljük.

Az azonosság visszafelé olvasva azt mondja ki, hogy ha a kitevő szorzat, akkor a hatvány emeletes hatványalakba is írható, azaz külön hatványozzuk az egyik szorzótényezőre, majd ezt a hatványt hatványozzuk a másik szorzótényezőre.