Hirdetés

Fejezze ki két vektor skaláris szorzatát a vektorok koordinátáinak segítségével!

Két koordinátáival adott vektor, a (a1,a2) és b (b1,b2) skaláris szorzata: a*b =a1*b1 +a2*b2.

Bizonyítás:

a =a1*i +a2*j, b =b1*i +b2*j, a*b =(a1*i +a2*i)*(b1*i +b2*i).

A disztributív tulajdonság alapján a szorzás tagonként végezhető:

a*b =a1*b1*i^2 +a1*b2*i*j +a2*b1*j*i +a2*b2*j^2, i*j =j*i =0, mivel i és j merőlegesek egymásra.

i^2 =|i|*|i|*cos(0) =1.

Hasonlóan (j^2) is 1-gyel egyenlő.

Így a*b =a1*b1*1 +a2*b2*1, amigől a*b =a1*b1 +a2*b2, ezt akartuk bizonyítani.

Tehát két vektor skaláris szorzata megfelelő koordinátái szorzatának összege.



Ady Endre (26) Angol (29) angol nyelvtan (35) Arany János (18) Atom (20) egyenes (25) elemzés (139) ember (23) energia (26) Filozófia (37) függvény (25) gazdaság (34) halmaz (24) háromszög (25) hőmérséklet (32) líra (22) magyar (22) magyar irodalom (289) Magyarország (38) magyar történelem (102) Matematika (25) Nyelvtan (43) PC (60) Petőfi Sándor (20) politika (24) párhuzamos (18) szerves (32) szervetlen (31) számok (27) számítógép (60) szög (25) tartalom (18) test (28) tétel (18) Történelem (21) USA (18) valós (19) vektor (18) vers (50) verselemzés (47) világirodalom (111) világtörténelem (115) víz (22) életrajz (21) érettségi (34)
Iratkozz fel hírlevelünkreNe maradj le a legújabb tételekről!

Értesülj elsőnek a legújabb minőségi tételekről, jegyzetekről és az oldal új funkcióiról!