A tartalom eléréséhez kérjük, lépj be!
Kezdd itt
Szavas kereso
Szint kereso
Top 10 feltöltő

Top 10 feltöltő


Igazolja, hogy a háromszög felezőmerőlegesei egy pontban metszik egymást!

VN:F [1.9.22_1171]
Értékeld
Beküldő: - Szólj hozzá
Szint: - Kedvencekhez
Megnézték:
2014
Nyomtasd
Dátum: 2008-02-11 Küldd tovább
  Letöltés

Igazolja, hogy a háromszög oldalainak felezőmerőlegesei egy pontban metszik egymást!

Legyen az ABC háromszög A-B oldalának felezőmerőlegese E. Ennek minden pontja egyenlő távolságra van A-tól és B-től. A B-C oldal felezőmerőlegese F. Ennek minden pontja egyenlő távolságra van B-től és C-től. Mivel A-B és B-C metszik egymást, a felezőmerőlegeseik E és F metszik egymást [mert metsző egyenesekre merőlegesek]. Az M metszéspont egyenlő távolságra van A-tól és B-től, B-től és C-től is; vagyis mindhárom ponttól, eszerint A-tól és C-től is. Tehát M rajta van az A-C oldal felezőmerőlegesén. Ezzel állításunkat bebizonyítottuk.

A három felezőmerőleges egyetlen közös pontja az M, a háromszög három csúcsától egyenlő távolságra van. Így ez a pont a háromszög köré írható kör középpontja.


 

Facebook hozzászólok

Facebook hozzászólók

Hozzászólok

Ha szeretnél hozzászólni, lépj be!

Ezt olvastad már?
Igazolja, hogy a háromszögben nagyobb szöggel szemben nagyobb oldal van!

Igazolja, hogy a háromszögben nagyobb szöggel szemben nagyobb oldal van,...

Close