A tartalom eléréséhez kérjük, lépj be!
Kezdd itt
Szavas kereso
Szint kereso
Top 10 feltöltő

Top 10 feltöltő


Bizonyítsa be, hogy a parabola egyenlete (x^2 =2*p*y)!

VN:F [1.9.22_1171]
Értékeld
Beküldő: - Szólj hozzá
Szint: - Kedvencekhez
Megnézték:
2216
Nyomtasd
Dátum: 2008-02-11 Küldd tovább
  Letöltés

A P paraméterű F(0,p /2) fókuszpontú parabola tengelypontja a koordinátarendszer kezdőpontja, tengelye az ordinátatengely. Bizonyítsa be, hogy a parabola egyenlete (x^2 =2*p*y)!

Bizonyítása:

A feltételek alapján a vezéregyenes egyenlete:
y =-P /2.

A P(x,y) pont akkor és csak akkor van a parabolán, ha P-nek a vezéregyenesen lévő merőleges vetületét T-vel jelölve (P -F =P -T), vagyis:
`(x^2 +(y -P /2)^2) =y +P /2.

Az egyenlet mindkét oldalát négyzetre emelve, majd rendezve kapjuk az (x^2 =2*p*y) alakot, amely eqivalens az előbbi egyenlettel, mivel a feltételek miatt (y +p /2) pozitív. A kapott egyenlet az y tengelyű parabola tengelyponti egyenlete.

Az x tengelyű parabola tengelyponti egyenlete:
y^2 =2*p*x.


 

Facebook hozzászólok

Facebook hozzászólók

Hozzászólok

Ha szeretnél hozzászólni, lépj be!

Ezt olvastad már?
Párhuzamosság, merőlegesség

Adja meg két egyenes párhuzamosságának, illetve merőlegességének - a koordinátageometriában...

Close